
Introduction to Modeling Tools for Software Security 1
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

Introduction to Modeling Tools for Software Security
Sam Redwine, James Madison University [vita1]

Copyright © 2007 Carnegie Mellon University

2007-02-21

Identifying security properties is a non-trivial undertaking within system and software requirements and
design. Certain tools can aid in the modeling and analysis effort required. Some of those tools were created
with security in mind; many were not but are, nevertheless, useful. This article introduces the security
concepts and the kinds of tools that are useful for modeling security properties.

Intended Audience
While students and others may find it a useful introduction to the subject, this article is primarily intended
for practicing specifiers and designers of software systems and their managers. It presumes a general
familiarity with software and to a lesser extent security. While this article does not presume a background
in the modeling of software, the General Modeling Concepts article in this content area provides general
information about modeling that may give a richer understanding of some content. A few parts are easier to
understand if one has a general knowledge of UML and dataflow diagrams.

Those who have a sound background in modeling of software and of software security may still find this
article useful in recalling and organizing the many concepts and issues involved.

Scope
The scope of this article is limited to analysis, specification, and design tools relevant to software
security. The modeling tools of interest deal with one or more artifacts from concept descriptions and
specifications through detailed designs. Many deal with system properties, security knowledge or principles,
or composition/decomposition. Security requirements and emergent system properties are, of course, of
interest, as are combining software entities (e.g., components) so that they provide or preserve the required
security, and tools that address other security issues or analyses.

Given its limited length and the need for wide coverage, this article’s attention will necessarily be restricted
to categories of tools with mention of a few examples. The paper has, however, pointers to lists of tools and/
or vendors published in print and/or on the Internet.

Unfortunately, because attackers might eventually exploit almost any weakness in a system, a clear
division between security weaknesses and other kinds of design faults is not always possible. Furthermore,
historically some design practices have not been widely recognized as resulting in security weaknesses until
they were exploited. Some areas of design difficulty such as concurrency including distributed asynchrony

[Damianou 2002a2], however, obviously have more potential for generating security problems than others.

While including a broad scope of types of analysis-, design-, or specification-related tools, the tools
addressed elsewhere on the BSI site are avoided. Thus, tools primarily addressing code, threat modeling,
risk management, assurance cases, protocols, cryptology, or testing receive less coverage than they might
otherwise. However, this area includes some tools that create or input design information reverse-engineered
from code and some design tools that generate code or are otherwise intimately connected with design.

Security
While externally system security is concerned with illegitimate or malicious actions and their consequences,
internally it is generally concerned with confidentiality, integrity, availability, and accountability regarding

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/701-BSI.html (Redwine, Samuel T., Jr.)
2. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_damianou2002a (Modeling Tools

References)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/701-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_damianou2002a

Introduction to Modeling Tools for Software Security 2
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

sensitive computing assets. It also relates to assurance—reducing uncertainty and providing grounds for
justified confidence. Issues of intellectual property, protection of the software, non-repudiation, anonymity,
and compliance with regulations and other governing documents are included. (See the BSI article

Introduction to Software Security3 for further details.) This article focuses on modeling the software system’s
consistency with its security requirements and violation-related modeling such as of attacks, weaknesses or
vulnerabilities, violations, and the risks and consequences thereof.

More security modeling has been done related to confidentiality than integrity. Much safety modeling is
labeled as being related to “integrity,” but the word is often not used the same way as in security. While
safety-oriented modeling techniques often are useful or suggest analogous techniques for security, care must
be taken concerning terminology and possibly inappropriate use of probabilistic analyses.

Specifications of security requirements and rules are sometimes called security policies. Policies must
consider the software’s security over its lifespan, including anomalies such as computer or media theft.

Ultimately, security exists to limit damage and provide peace of mind, but in practice, it must also comply
with governing directives including regulations, standards, and organizational policies.

Organization of this Article
This article has three major parts:

• Security-Relevant Modeling in Software Development4: important subjects and objectives for the use of
modeling across the life cycle, including security objectives, properties, and aspects and their modeling.
This section includes subsections on requirements, design, and assurance cases.

• Tool Characteristics5: This section explains the general nature and relevance of key tool characteristics.

• Selecting Tools6: factors to consider when addressing the selection and use of tools to aid in software-
security-related modeling

The article ends with a summary section. References are given for those who wish to learn more about the
topics, methods, notations, or tools mentioned.

Security-Relevant Modeling in Software Development
Modeling tools are used throughout the development life cycle to support the creation and modification
of secure software and analysis and verification. Security-relevant modeling tools are primarily used
for discovering particular kinds of faults, achieving correctness, and aiding the creation of or checking
conformance with security policies or specifications.

These tools may also incorporate aids and specialized knowledge that strictly speaking might not be labeled
“modeling” but that support related tasks. These may include lists or catalogs of potential parts of an artifact
or system and checklists or other aids for human performance of reviews. An example of such a tool is the

EBIOS tool8, which aids in security requirements analysis and definition.

Requirements
While general tools relevant to software system requirements can be used to record and perform some
analyses, several specialized tools also exist. Modeling requirements often involves describing or modeling
aspects of the software system’s environment. This section addresses modeling and tools for threat analysis,
creation and compliance with security policy, specification (of functionality, for example) and its consistency
with policy, and tools with broad coverage of security requirements activities.

3. http://buildsecurityin.us-cert.gov/bsi/547-BSI.html (Introduction to Software Security)
8. http://www.ssi.gouv.fr/en/confidence/ebiospresentation.html

http://buildsecurityin.us-cert.gov/bsi/547-BSI.html
#dsy698-BSI_part1
#dsy698-BSI_part2
#dsy698-BSI_part3
http://www.ssi.gouv.fr/en/confidence/ebiospresentation.html

Introduction to Modeling Tools for Software Security 3
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

Threat Analysis
Threat analysis is a source of security requirements. Threat analysis addresses such issues as possible
threatening entities or categories of attackers, their present and future capabilities, and possible consequences
from their actions. (The latter, as well as analysis of designs for vulnerabilities, will be discussed more under

Design9.) Some tools combine threat analysis and vulnerability analysis. An example is the Microsoft Threat

Modeling Tool (available through the Microsoft Download Center10).

Compliance with Governing Documents
Government regulations such as Sarbanes-Oxley have had a significant influence on security requirements.
In large part, security policies for a software system derive from societal mandates (e.g., laws and
regulations), organizational policies, and larger encompassing system policies, as well as the effects of
interfacing systems. While in practice often roughly half of the compliance effort deals with non-technical
issues such as work rules and processes, the software system’s security policy must meet all compliance
requirements relevant to its behaviors and must include the particular policies specific to it.

Several tools help organizations create and realize security policies that comply with standards and U.S.
laws and regulations. These include specialized tools from Polivec, Symantec (BindView), and Zequel.
Less-specialized tools from Archer Technologies, Cybertrust, McAfee (Preventsys), and NetIQ include this
functionality.

Constraints on System Behavior
Security requirements can also be internal. The design of a large system describes the security constraints
of its components. These security constraints reflect the software’s responsibilities towards relevant policy
principally for the prevention of, avoidance of, or accountability for violations. Many of these behavioral
constraints are all encompassing, as in “No behavior of the software shall result in X.”

In addition to constraining otherwise existing functionality, these constraints may imply the need for added
functionality, such as a constraint on who may do what (implying a need for functionality to adequately
identify people). In turn, this may require related constraints, such as not allowing bypassing of this
identification functionality (e.g., of authentication).

Because of its special concern to software developers, these modeling tools often chiefly consider security
policy as it directly constrains the behavior of a software system. These constraints often relate to entity
identities and constraints to exist under certain conditions or to doing various operations or actions. Most of
these constraints are reflected in access controls that during operations will be driven by user-specified rights
or privileges. Common relevant topics include identification and authentication, authorizations, and logging
and auditing.

The security properties specified in the security policy as constraints on behavior must be compared to the
system’s specifications or designs that describe the functionalities’ behaviors. In the face of this, to make
the verification of the system specification’s compliance with its security policy practical, both must be
unambiguous, talk about the same entities and operations, use the same or interoperable notations, and have
comparable levels of abstraction.

During operations, security policy enforcement deals with specific individual or categories of entities
and actions and are defined by constraints on actions because of the actor’s, action’s, and action target’s
categories and attributes as well as possibly the context and the conditions that are currently true. Thus,
they can involve much more than just the identity of the actor and the type of action. The actor “accesses”
its target in order to perform the action—say a user accessing a file (or, more accurately, on behalf of the
user some process accesses the file system, which accesses the file). An access control policy is generally
dynamic. Identities may be established or removed and their privileges (and obligations) granted and
revoked, and assets may change. The software system’s requirement is to provide a means to manage and

9. #dsy698-BSI_design
10. http://www.microsoft.com/downloads/

#dsy698-BSI_design
http://www.microsoft.com/downloads/

Introduction to Modeling Tools for Software Security 4
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

perform policy definition or access control administration, enforce the policy while ensuring accountability,
and handle violations of policy while itself never being the source of security problems.

Security Policy Model

Security policy model is a traditional name for the combination of the

• specification of the security policy—normally constraints (or properties)

• specification of the behavior of the system—normally a high-level specification of the design11

• argument showing the consistency of the two—normally this means showing that a software system
always stays within security constraints

This need to show consistency has been already been mentioned. In the early days (1960s, 70s, and 80s), this
was often written about in terms of formal proofs. In the 1980s the concept of levels of assurance mapped
to different kinds of evidence for this consistency. The legacy of this work is seen in today’s Common

Criteria12. However, borrowing in part from experience in safety, this concept has been generalized to one of
an assurance case, which in part tries to address its own uncertainty and is intended to provide grounds for
justified confidence and decision making by stakeholders.

One example of tool use is Praxis’s use of Z/Eves to formally state security policy and show the consistency

of the system’s high-level design with it, using mathematical logic [Hall 200213].

Security Requirements Tools with Broad Coverage

EBIOS14 is an example of a tool that attempts to provide support for security-related activities from
requirements elicitation and threat analysis through policy and the identification of required functionality.
While its modeling aspect is quite limited, its embedded security knowledge, including techniques, artifacts,
and possible requirements and functionality, is extensive. It is accompanied by a five volume guide to related
methods and techniques that has merit even apart from using the tool.

In using security-oriented tools with embedded knowledge concerning security functionality, ensure that
security properties and security functionality are not bypassable. The existence of the needed security
functionality does not by itself guarantee security.

Design
Showing consistency of design with requirements forms the bridge between requirements and design. The
security policy model discussed above is one approach. A number of other issues and models also relate to
the security aspects of design.

The identification and specification of the functionality needed to carry out the security policy and meet
security requirements is a key issue in design. Tools may provide lists or catalogs of possible functionality;
they may also provide guidance and analysis. The example of EBIOS’s support for this activity has already
been mentioned.

Security aspects of your design should facilitate or at least minimally hamper the software system and
its users doing their legitimate tasks while minimizing the opportunities for illegitimate actions and the
size of losses as well as coping with their occurrence and aftermath. Users like flexibility, so you want to
accommodate them as much as possible. On the other hand, making certain security functionality non-
bypassable is normally an inviolate requirement of the system.

Models providing measures of merit for the amount and kinds of interaction paths include simple counts and

more elaborate formulae, for example [Manadhata 200415].

12. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/239-BSI.html (The Common Criteria)
13. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_hall2002 (Modeling Tools References)
14. http://www.ssi.gouv.fr/en/confidence/ebiospresentation.html
15. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_manadhata2004 (Modeling Tools

References)

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/239-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/239-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_hall2002
http://www.ssi.gouv.fr/en/confidence/ebiospresentation.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_manadhata2004

Introduction to Modeling Tools for Software Security 5
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

Modeling authorization and authentication can generate a spectrum of models:

• Business process and role models: Role-based access control often fails because we cannot consistently
model the roles in an organization.

• Policy model: A privacy or confidentiality policy may have to follow the data as it moves within and
among systems.

• Performance model: What is security’s impact on system performance, and does the design scale?

• Data management model: Changes in permissions may require synchronization of user security
information across multiple systems.

This ability to make changes and do proper administration is critical. The system may be implemented
correctly, but the identification and authorization data also needs to be maintained correctly.

The modeling of inference is usually difficult. This is the problem of what an entity might infer not from
the direct disclosure of something but from legitimate disclosure of other information or behavior of the
system that is visible to the entity. Driven by privacy concerns, considerable work exists on this problem in
databases that provide only statistical or group results and what might be inferred about individual values in
the database. You should take advantage of this if it is relevant to you but recognize few definitive results or
models exist.

Adaptations have been made to existing modeling approaches and notations to facilitate addressing security,
usually accompanied by some adaptation of an existing tool. Two examples for UML are described in

[Jürjens 200416] and [Lodderstedt 200217]. A number of security-oriented design patterns have been created

as models for portions of designs and their use addressed [Fernandez 200718]. Aspect-oriented design is

another emerging approach [Viega 200119].

State machine modeling approaches have also been adapted. Automated verification of state machines has
advanced over the last 15 years. Model checking tools for state machine models have become surprisingly
powerful and are able to handle enormous numbers of states. Commonly used tools include SVM and SPIN.
The most common uses for model checking are concurrency and protocol analyses. Despite the huge number
of states that modern tools can handle efficiently, abstraction of a design to have fewer states is often needed.
Even so, analyses to establish that the system will never enter a state that violates security are not always
carried to conclusion. A breadth-first exploration of reachable states might be done to identify all states that
can be reached from its starting or initial state in say ten state changes.

State machine models have also been used to generate tests, including ones trying to violate security. An

example of this in the software security area is described in [Blackburn 200120].

Lack of Weaknesses or Vulnerabilities
While creating a design using sound methods, principles, and positive verification of required properties and
functionality is essential, good engineering calls for also looking for known pitfalls or other weaknesses in
the design. Attack and vulnerability analyses are the two main activities where modeling is done to discover
and fix or mitigate weaknesses or vulnerabilities. Dangerous events and their causes and consequences are
subjects for modeling.

Not all vulnerability seeking tools are modeling tools. Some simply scan for weaknesses or conduct and
analyze tests.

16. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_jurjens2004 (Modeling Tools
References)

17. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_lodderstedt2002 (Modeling Tools
References)

18. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_fernandez2007 (Modeling Tools
References)

19. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_viega2001 (Modeling Tools
References)

20. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_blackburn2001 (Modeling Tools
References)

http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_jurjens2004
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_lodderstedt2002
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_fernandez2007
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_viega2001
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_blackburn2001

Introduction to Modeling Tools for Software Security 6
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

Increasing the difficulty in this area is the frequent inability to justify the use of probabilistic models. This is
due to the misleading and perverse behavior of attackers who tend to attack where, when, and how you least
expect. Nevertheless, a number of approaches assign probabilities to different attack possibilities in order to
categorize the dangerousness of a given weakness.

Modeling of covert channels is another specialized area. Covert channels are abnormal means of
communication from computing areas with higher secrecy levels to lower ones. The timing of overt
messages, the use of message bit locations not normally used, or availability of resources may convey these
messages covertly. Covert channels are modeled to determine the bit rate that they can pass—maximum or
average.

Modeling Dangerous Events
Of course threat analysis has an influence on security policy, but when modeling for discovery of potential
weaknesses the emphasis is often on actions that an attacker might take or the implications of partial or
complete success of attacks. One important kind of implication is the consequences that could result from
security violations and possibly mistakes in policy or usage.

Modeling using attack trees and attack patterns21 is employed to try to find vulnerabilities or weaknesses.
Attack paths can be modeled via these methods or by other modeling techniques. These attack-oriented
models may simply record human review and postulation, derived from catalogs of attacks, or ones
generated automatically from the design. In addition, Microsoft has used Dataflow Diagrams to help identify

attack paths. Example approaches include those in [Swiderski 200422], [Steffan 200223], [Liu 200524], [Liang

200525], [Hoglund 200426], and [McGraw 200627].28

Potential cause and root cause analysis can be used to model attacks by working backwards from
consequences to triggering events and prerequisite or prior conditions, and by identifying contributing causes
determine the best response. Experience in modeling of accidents within the safety community indicates this
is often efficacious, but sometimes it is not chains of events that cause accidents but inherent behaviors of
complex systems that are acting “correctly.” Complexity is also a difficulty in security.

Modeling Consequences and Risks
Models of risks and consequences related to violations and failures given the design are important for
design. Probabilistic risk modeling and tools have a long history in finance and in safety. You may find ones
applicable to parts of your problem, and some of these techniques have been applied to security, such as

[Schechter 200529]. Design issues such as avoiding single points of failure or single points whose violation or
capture would result in total or severe consequences can be modeled.

Consequences can be modeled and designs can attempt to limit or reduce potential or real negative
consequences of violations by, for example, limiting the set of entities or resources that are at risk (inside or
outside the system) or limiting or excluding assets. You can model to evaluate how well you have limited

21. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack.html (Attack Patterns)
22. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_swiderski2004 (Modeling Tools

References)
23. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_steffan2002 (Modeling Tools

References)
24. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_liu2005 (Modeling Tools References)
25. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_liang2005 (Modeling Tools

References)
26. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_hoglund2004 (Modeling Tools

References)
27. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_mcgraw2006 (Modeling Tools

References)
28. Nancy Leveson should be credited with introducing the basic idea to the software community in the context of safety as well as

such techniques as fault-tree modeling and analysis [Leveson 1995].
29. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_schechter2005 (Modeling Tools

References)

http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_swiderski2004
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_steffan2002
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_liu2005
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_liang2005
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_liang2005
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_hoglund2004
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_mcgraw2006
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_schechter2005

Introduction to Modeling Tools for Software Security 7
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

various consequences in size, location or propagation, time or duration, nature, or degree of surprise or
unpreparedness. Tolerance for attacks, including recovery and repair, are important areas for modeling.

The use of an assurance case30 (discussed below) and risk management31 modeling tools and techniques can
be relevant here as well.

Software Security Assurance Case as a Model
Models appear within an assurance case in two roles. The first is as part of the evidence and the second is
as bases for arguments that support the security claims of consistency with policy by linking supporting
evidence to the claims. An example of an assurance case tool useable for security is the Assurance and

Safety Case Environment (ASCE)32 from Adelard.

The requirement for composability is central to achievement of security, and showing that the system
has security property preserving (de)composition is an essential element of the assurance case. At the
highest level a model can show that the design’s behavior agrees with the security policy. At each level the
decomposition or refinement of a part of the system into its next lower level parts and the way they relate
to each other must preserve the security properties of the higher level part. Thus, one needs a way to reason
about this—a model of that portion of the design.

One also needs the design to be appropriately modeled whenever you wish to show that the security
properties can be achieved by trusting just a subset of the software.

Thus, while it contains other content, essential portions of an assurance case often rely on design models. In
addition, the assurance case as a whole can be thought of as a risk-oriented model of the software or system.

Future Trends
Several trends and possibilities exist in design modeling. Probably the most talked about one is Model
Driven Architecture (MDA) or more generally model driven development or engineering (MDD or MDE),
one of whose key ideas is generation of software from design descriptions. Another trend is component-
based development (CBD), a third is web services, and a fourth is systems of systems (SoS).

While additional specialized security modeling tools may be developed to address these, the greatest
need is to incorporate quality attributes such as reliability and security into more general tools despite the
considerable difficulties in doing this. One example is Microsoft’s Software Factory attempt to model quality
attributes.

MDA or MDD has received considerable recent attention, particularly from the Object Management

Group (OMG),33 but also from other framework or standards organizations and vendors. Tools supporting

description of architectures or designs and exchanging these descriptions have proliferated.34 In addition, the
OMG is producing exchange standards for exchange of relevant data among tools—something that may have
even more future impact. As these tools begin to address security, the reliability and trustworthiness of the
tools themselves will become even more serious issues.

Tool Characteristics
This section provides short descriptions and discussions of important characteristics to consider for
software design modeling tools. These cover a tool’s functionality, usage, quality, and methods used. Some

30. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance.html (Assurance Cases)
31. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/risk.html (Risk Management)
32. http://www.adelard.com/web/hnav/ASCE/index.htm
33. For information on OMG MDA efforts see the Object Management Group website [OMG 2008a]. Mike Riley's Software

Development Magazine article lists tools and vendors, and for one collection of articles on MDD see the IBM Systems Journal,
Special Issue on Model-Driven Software Development [IBM 2006, Riley 2006].

34. For vendors see the Object Management Group website and Mike Riley's Software Development Magazine article [OMG 2008b,
Riley 2006].

http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/risk.html
http://www.adelard.com/web/hnav/ASCE/index.htm
http://www.adelard.com/web/hnav/ASCE/index.htm

Introduction to Modeling Tools for Software Security 8
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

characteristics may relate more to the tool or to their embedded modeling approach. For example, scope is
often more a modeling issue, while scalability is more often limited by the implementation of the tool.

Scope
A tool or toolset and its modeling capabilities may cover more or less of the life cycle and aspects of design.
It may or may not include networking or cryptographic concerns. It may be suitable for some subset of
security properties, say most of confidentiality, but not accountability or intellectual property protection.
Uncertainty may be expressed explicitly or ignored. Some tools specialize in particular application domains
or level of abstraction. All of these and other such scope differences can significantly affect the suitability of
a tool for your particular project and purpose.

In addition to suitability for current uses, the tool’s ability to do everything the organization anticipates
needing in the future can be important to technology adoption decisions.

Conceptual Basis
A number of conceptual bases have been mentioned, such as logic and set theory, state-machine-based
reachability analysis, access control models, inference and noninference, attack trees, and categories of
weaknesses. Probability theory and risk management models are also possible bases. A given tool will have
one or more underlying bases for its models and how to reason about them.

Notations Used
Although a tool may have different external and internal representations for its models, the notation(s) used
by tool users place limitations on the descriptive power and the rigor and kinds of analyses and results it can
provide. However, explicit user-visible notation may not be the only input to the tool; it may also gain input
from other existing information. Its notations also have effects on the acceptability and usability of a tool.

Level of Rigor
Informality can aid accessibility, but it lends itself to ambiguity and is a serious impediment to deep or
precise analysis. Structuring information with semiformal notations involving such means as tables and
diagrams can aid understanding and increase usefulness. Tables and diagrams can also be used to express
formal notations, as can more traditional means such as mathematical notation. The level of rigor is a key
determinant of what analyses the tool might perform.

Amount and Nature of Security-Related Knowledge Included in Tool
While recognizing that no tool is perfect or necessarily fits your situation, embedded expertise can be of
considerable help. Some tools such as EBIOS and the Microsoft Threat Modeling Tool contain knowledge
and techniques that can automatically bring security expertise into your security-related creation, modeling,
and analysis tasks. This is not to recommend these two tools but to point out the possibilities and advantages
of tool-supplied security expertise.

Analyses Provided
Many different capabilities are available in different tools. These may include simulation and measurements
as well as analyses. A few examples of analysis capabilities are

• syntax and type checking

• coupling and cohesion measurements

• exception identification

• checking functions and relations for empty domains

• information flow analysis

• reachability analysis

Introduction to Modeling Tools for Software Security 9
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

• precondition calculation

• general theorem proving

• reverse engineering of source code

• analyses of simulation results

These analysis capabilities combine with the scope of the tool and notations (and their rigor) to determine
much of the power of a tool.

On the other hand, like all software products, modeling and analysis tools can suffer from having too many
unneeded features (featuritis) and become overly complex, hard to learn, and too expensive.

Soundness and Completeness
Often an important question is Is everything an analysis reports true, or does it also report likely or
suspicious items? Another important question is Does it always report all of the items of a certain kind, or
are its results possibly incomplete? The answers to these questions can make significant differences in the
level of uncertainty that its analyses leave you with.

Scalability
How big a design or system can the tool handle? Can this be readily increased as needed? Software in
general is increasing in size, and abstracting or reducing the size of the (pretend) system so your model will
fit within a tool’s capabilities can be difficult and weaken confidence that nothing essential to the analysis
has been left out. Given the investment in a tool and the skill needed to use it, some time may be required to
rebuild the model when the software increases in size. Thus, scalability is often a significant issue, including
in user acceptance of the tool.

Acceptability and Usability
Is the tool acceptable, or even though technically desirable does it, for example, scare people or use ugly
colors people hate? What prerequisite skills are needed to begin learning how to use it? How easy is the tool
to install and learn? Is it slow, mistake prone, hard to remember how to use, or unsatisfactory to its users? On
the other hand, are the complexities of the tool and its analyses invisible to the user and take input the users
are already producing? These kinds of factors can make the difference between a successful tool or design
model and an unsuccessful one.

Compatibility with Other Tools
Today, no single tool or toolset has all the capabilities one might desire for describing and modeling designs
for the six purposes mentioned earlier. Therefore, being able to use multiple tools in effective combinations
is necessary to gain the maximum advantage from design modeling. The low cost way to do this is for the
tools to already be compatible.

Correctness and Security of Tools
All modeling tools have potential for defects and the inclusion of malicious software. Design tools that
generate code usually produce fewer faults in the code than the average programmer does. Nevertheless, a
code-generating tool might or might not result in high-security code, so unless this is an explicit goal of a
highly reliable tool, the tool may have difficulty providing adequate input to your assurance case. In theory,
tools should have at least as good an assurance level as that intended for the software being produced using
them. If this is not true, using a results checking tool (e.g., a proof verifier) that is small and easier to gain
confidence in (always a good idea) can be particularly valuable. In addition, using and comparing the results
from multiple tools can mitigate problems. However, it is essentially impossible to determine how much
mitigation this provides.

Introduction to Modeling Tools for Software Security 10
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

Code Generation
Not all code generation is the same. Does the tool generate complete code ready to run? If not, how much or
which portions of the code does it provide? Is the code produced source code, an intermediate object code,
or the final binary? Does it provide make files or tests to accompany the code? (Beware the same tool faults
causing problems with both outputs.) And finally, what non-generated software does it depend on to execute,
such as libraries, database products, or frameworks?

Test Generation
In addition to code generation, test generation is another example of a tool’s ability to map from the more
abstract to the more concrete. Automated test generation from specifications and designs has been done in
a number of situations. Such test automation is not a complete answer to testing but may substantially aid
speed and efficiency.

Forms of Results
All of the characteristics listed so far can have effects on the kinds of results or outputs a tool provides. But
other dimensions exist as well. Does it provide summaries, indications of changes, graphs, denoting by color
and shape, output selected or sorted by measures of importance or relevance, show the output alongside the
input that produced it, version identification, history of prior analyses, traceability, file types or exchange
formats suitable for input from or by other software, etc.? All of these can make a difference depending on
your situation.

Other
As with all decisions, the better you understand your needs and possible solutions, the better your tool
selection decision is likely to be. After analyzing your situation and needs for design or specification
modeling tools, you may find characteristics not on this list that are important to you. However, you should
keep in mind the ones listed here, as overlooking them when they are important to you could lead to a poor
decision.

Selecting Tools
If possible, tools should not only provide straightforward features but facilitate dealing with key concerns.
For example, verifiability and your software’s assurance case need to be considered from early conception

and planning for the software’s development.37 In addition, simplicity and other security 38design

principles39, such as minimizing the amount of software that you must trust, can ease these concerns. While
this is important to keep in mind, straightforward concerns and basic features may dominate your decisions.
These include notations, creating and editing artifacts, the kinds of analyses provided, and fit with your
software life-cycle processes.

You should ask yourself at least these questions:

1. What are your objectives for using the tool?

2. Where in the life-cycle activities will it be applied?

3. Is the tool consistent with and supportive of your life-cycle process? For example, what are the artifacts
used and developed and how are they managed?

4. What is the model or modeling approach that is the basis for the tool?

5. How effective is that model for meeting the desired objectives?

6. How well does the tool support the model?

37. See the BSI Assurance Cases, Architecture, Code Analysis, Penetration Testing, and Security Testing content areas [BSI 2008a,
2008b, 2008c, 2008d].

38. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles.html (Principles)
39. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles.html (Principles)

http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles.html

Introduction to Modeling Tools for Software Security 11
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

7. How usable is the tool?

8. How acceptable to your organization will the tool be?

9. Do the tool and/or your processes need to be adapted for it to work in your organization?

10. How easy would it be to introduce it into your organization and have it successfully used?

11. How can you best use what is known about technology transfer and organizational change to make the
tool successful in your organization?

12. How will you know its level of success or if you need to later change your decision?

The stimuli and objectives for adopting security-related software tools vary. You may aim to produce a better
original requirements or design artifact or you may want to find and possibly fix weaknesses in the artifact.
You may desire to validate your system’s specification to ensure you have specified a system that will be
successful and adequately secure in the real world, or you may want to verify the specification by comparing
artifacts (e.g., security policy with system design) for consistency or “correctness.” Some of your objectives
may aim at security and some at assurance, or you may want both at once. In addition, you may wish to
increase efficiency and efficacy.

Whatever your specific objectives, seriously addressing security requires changing existing processes that
do not do so. Likewise, achieving high assurance would necessitate changing most organizations’ processes.
Thus, you may need to change your processes or methods not just to best utilize a tool or tools, but to
achieve more secure software. Thus, the tool’s fit to your process may not be simply how well it fits your
current process, but how well it will aid you in your revised software process.

You should chose notations that have the tool support you need. However, more than security-oriented tool
support goes into decisions concerning notations. Factors such as their understandability by key stakeholders,
tool cost, amount of training needed, and ease of use influence which notation you choose.

Ease of editing is important, but for substantial professional use you should be willing to go through a period
of learning and practice to achieve facility in using the tool. Just as one likes programming language editors
that provide skeletons, statement completion, and incremental syntax and style checking, these features can
be useful in editors for design notations.

During the creation of software specifications and designs, the tool features that are readily apparent include
ease of initial capture, including catalogs of reusable units or graphics, “automatic expansion or completion”
of parts of the description, checks for correct use of the notation and conformance to any style guide,
type checking, and incremental checking for internal consistency. Some tools also offer features such as
automatic calculation of preconditions, design measurements, simulation, capture of traceability information,
and theorem proving.

Tools that provide checking and verification features that can be used during creation—that is, ones not
requiring a complete description of a design—are useful for two reasons. The feedback provided can help
you avoid or remove mistakes, and if you describe something in a way that results in the tool not being
able to provide its calculations or analysis automatically, you know you need to state the description in a
different, usually simpler, way.

While quite useful for security concerns during specification of behavior and security constraints, and
design, the features mentioned so far are already available in general design tools and many are oriented
toward showing correctness or compliance. In addition, many modeling approaches and tools originally

created for safety can be useful in security as well. [Alexander 200540] and [Despotou 200741] are recent

examples with promise, and [Stavridou 199842] provides an insightful if somewhat technical comparison of
safety and security that also includes a substantial discussion of security modeling.

40. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html (Modeling Tools References)
41. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html (Modeling Tools References)
42. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_stavridou1998 (Modeling Tools

References)

http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_stavridou1998

Introduction to Modeling Tools for Software Security 12
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

In contrast to showing correctness or compliance with constraints, recently tools especially made for security
more frequently are oriented towards discovering particular problems, for example through the use of attack
trees or patterns. Microsoft’s Threat Modeling Tool has already been mentioned. Examples elsewhere of
tools with similar objectives include several code-oriented tools and runtime tools, including testing tools,

and others such as the tool in [Liang 200543] that attempts to recognize new attack patterns during operation.

Putting all these considerations together to make selections can be difficult. Few tool selection efforts have
appeared in the literature, and, as always, one should beware of simple-minded decision-making processes
such as counting the numbers of features. Two published efforts appear suggestive of how you might
approach the problem for security tools. Andrew J. Kornecki has performed a series of studies of tools for

high-assurance software for the U.S. Federal Aviation Administration.44 His work has been driven in part by

the requirements of DO 178B, the aviation safety standard. An example is [Kornecki 200545]. The second is
a report resulting from a Praxis High-Integrity Systems study for the UK government on code analysis tools

as part of an investigation on improving the evaluation at the Common Criteria’s EAL4 [Jackson 200446].

In the end, you need to understand your situation, problems and objectives, system, software process, and the
possibilities for tool use, as well as your readiness to use various tools. Avoid tools with aspects that might
be “fatal” to successful adoption and use in your organization, such as mathematical notation or logic that
people might not understand or be willing to use. You also should consider others’ experience with the tool
and the possibilities of pilot projects to evaluate tools, as well as the introduction of different capabilities or
tools over some length of time. While a highly structured decision process may not be necessary, you need
to take all these characteristics and situational factors into account and attempt to select an affordable set of
tools with the best cost-benefit-time-quality tradeoff for you.

Summary
This article has walked at a summary level through most of the important issues and areas of knowledge
concerning security-relevant requirements and design modeling tools. Additional concepts, explanations,
examples, details, and references regarding tools are provided in the other article(s) in this Modeling Tools

content area, and related material appears in other BSI areas including Policy, Assurance Cases48, Code

Analysis Tools49, and Architecture. Finally, you should realize that despite anything said above, modeling
and modeling tools are not magic, and they seldom replace the human design skills, technology and domain
knowledge, cleverness, hard thinking, and persistence required to create good designs. However, if you
possess these, the right tools can move you closer to appearing to be a magician.

Carnegie Mellon Copyright
Copyright © Carnegie Mellon University 2005-2010.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu1.

43. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_liang2005 (Modeling Tools
References)

44. For more on Andrew J. Kornecki 's efforts see the publications section of Kornecki's website [Kornecki 2006].
45. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_kornecki2005 (Modeling Tools

References)
46. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_jackson2004 (Modeling Tools

References)
48. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance.html (Assurance Cases)
49. http://buildsecurityin.us-cert.gov/bsi/articles/tools/code.html (Source Code Analysis)
1. mailto:permission@sei.cmu.edu

http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_liang2005
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_kornecki2005
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling/699-BSI.html#dsy699-BSI_jackson2004
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools/code.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools/code.html
mailto:permission@sei.cmu.edu

Introduction to Modeling Tools for Software Security 13
ID: 698-BSI | Version: 9 | Date: 8/22/08 10:19:54 AM

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

